THERMAL CONDUCTIVITY OF CONSOLIDATED SYSTEMS

G. N. Dul'nev, M. A. Eremeev, UDC 536.21
and Yu. P. Zarichnyak

A structural model and method for calculating the effective thermal conductivity of con~
solidated granular materials are proposed.

Formulation of the Problem. A considerable number of natural and artificial materials of varying
origin are known which can be converted by the term "consolidated materials." Among them are sintered,
cemented, flocculated, welded, etc. materials. We consider those consolidated materials which are ob-
tained by pressing or sintering of granular systems that are initially in the state of a free charge.

Visual study of such materials has shown that the greater part of their structure is a spatial skeleton
of adhering particles. In this case, the pores formed by the skeleton are considerably larger than the pores
between the particles (Fig. 1a). Using the rules for transition from a random system to ordered models
(Fig. 1b) and from the latter to an elementary cell (Fig. 1c), the subsequent study of heat transport will
be carried out within the framework of the elementary cell [1].

We denote by VT, Vq, Vy, and V = Vy + V, + Vp the volumes of the solid particles, of the pores be-
tween the particles in the skeleton, of the large pores in the structure, and the total volume of the system
(see Fig. lc); we introduce the notation myy for the porosity of the skeleton {first-order structure), my,
for the porosity of the second-order structure, and for total porosity of the system, my:

my= (V= V)iV, my =V/V, my =V/1l—myV, 1)
where (1 —m,,)V is the volume of the skeleton. It is easy to show that the following relation,

1 —m,

My, = 1 — {2)

1— Moy

exists between these parameters.

The effective thermal conductivity A of a structure with interpenetrating components is related to the
effective thermal conductivities A of the skeleton and A, of the components in the large pores by a system
of equations [1] which takes the form

A 2v,C, (1 —C,) A,

S = O v, (1 — G R - .
Ay : v,C, + (1 —C,) P )

My, = 2C3 — 3C5 + 1.
using new notation.

Thus further analysis is connected with the determination of the porosity m,, of the second-order
structure and of the values of the coefficients of thermal conductivity Ay and Ax. All these parameters
depend on the nature of the deformation of the system and on the state of the free charge of the grains
before the formation of the consolidated material.

Anpalysis of Skeleton Deformation. We consider geometric deformation of the charge during sintering
and pressing. The fact that the skeleton sketched in Fig, la is not completely broken down is evidence of
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Fig. 1. Transition to an ordered model of granular structure: a)
actual structure; b) ordered structure; c) elementary cell.

its stability. In our opinion, the stability can be explained in the following manner: in the initial stages

of sintering and pressing the skeleton is partially broken down, and the particles being deformed agglom-
erate with the agglomeration of the particles, in turn, strengthening the skeleton, In addition, highly porous
materials are often. prepared by introducing a slightly compressible filler (rubber, for example) into
the large pores, which also strengthens the skeleton, We therefore assume that reduction of charge
porosity during pressing and sintering occurs both because of spreading of the skeleton (with consequent
reduction of the porosity m,,) and because of deformation of the particles in the skeleton,

We introduce the notation mg, mgk, and mgz corresponding to the total porosity, skeleton porosity,
and porosity of the second-order structure in the original state of the free charge (before pressing). It is
obvious that a relation similar to Eq. (2) exists between these parameters, i.e.,

my=1— ——2 (4)

Analysis of a large amount of data for granular systems allows one to assume the most probable
value of the porosity of the skeleton in the state of a free charge with particles from 0.01 to 1 mm in size
is mJ =~ 0.4.* We consider heat transfer in the skeleton and find an expression for its effective thermal
conductivity Ak.

There are two possible solutions for this problem: represent the arrangement of the particles within
the skeleton in the form of some kind of ordered structure or assume the particles are arranged randomly
within the skeleton. The first way, which is geometrically more visualizable, has been realized [2]. It is
of interest to select the second way, having used the results of [3] where it was shown that the effective
thermal conductivity of a skeleton with randomly arranged granules is equal to the effective thermal con-
ductivity of its volume element, a two-dimensional representation of which is shown in Fig, 2a. It con-
sists of a solid component (portion of a spherical granule) in the form of a cylinder of radius r; and height
r with a spherical base of radius r and a gaseous or liquid component filling the pore in the form of a cyl-
inder of radius ry, The relative dimensions of the volume element, y; = r3 /r and y3=rd/r, are uniquely
related by the expressions in [3] to the porosity mgk and the coordination number N, which is the average
number of contacts per particle. Using the new notation for the parameters, we rewrite these expressions:

Nl 3+ /10, 9om ‘5)

- L
3

y=2¢y N—1UN, PB=g(l—m)y °. (6)
In particular, Eqgs. (5) and (6) show that for my. = 0.4, the parameters N = 7.09, yJ = 0.825, and
¥4 = 0.696.

In the model we represent the deformation of the granular system during pressing or sintering.
For simplicity, we make the following assumptions.

1. The coordination number N for the skeleton depends only on the porosity in the initial state and
does not change during deformation (N = const).

*It is assumed the original granular system has not been subjected to special treatment such as vibratory
shaking, for example.
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Fig. 2. Model of granular system (a) andparticle deformation (b},

2. Linear deformation of a particle in the contact regions (reduction of radius during compression)
is the same in all directions and is wi (Fig. 2b). For the deformed system, the relative radius
of the model decreases in comparison with the original value yg,

Y= r;r'jr = yg(l _%K)’ Ay = %K/r' (7)

We find a relation between the relative particle deformation wy and the relative radius of the actual
point of contact y, = ry /r, where r, is the radius of contact. To do this, we assume that during deformation
the particle material is displaced in the region around the contact point in the manner shown in Fig, 2b.
Such a scheme is close to reality for plastic deformation of nonbrittle particles. In fact, because of the
small size of the original contact points, the specific pressures at the contacts far exceed the creep limit
for granular systems even for small pressing forces.

For simplicity, we further assume that the area around the contact is a cylinder of radius r, (Fig. 2b).
In deformation of particles by an amount »y, the volume of the spherical segment AOB is displaced in the
area around the contact as shown by the arrow in Fig, 2b. Furthermore, one must satisfy the condition
requiring equality between the volume of a cylinder with a base radius ry and a height he = r—v r? ~r22 and the
volume of a spherical segment with the same base radius and height hy +

~ 1 . —
Ve = Jrrghc = nr3y§hc, VS = ’ ard (hc %) (38— hc~ Hehs ‘L,‘: = hcf’r. (8)

Equating Vi and Vg and making the transformations, we obtain a relation between the relative radius

y2 of the contact point and the relative particle deformation wy:

¢

J 3 ' / g ( 2)1/2
Y= 11-—“ Ll_‘ —_[ (- %u) o l_// 16 (1 - y‘lc) - 3?‘}\' } } . &)
It is obvious that the condition yymnax = y3 must be satisfied in the case of maximum deformation of
the skeleton, i.e., its conversion into a monolith (M = Wemax). A relation between the maximum deforma-
tion nxmax and the initial porosity of the skeleton can be obtained by studying unit volume of the skeleton
i.e., a cube of volume V (1 x 1 X 1=1), In this case, the volume occupied by the solid component is V;
= V(L -mYy) = @ -)®, whence

e = 1 — 1 1 —m,. (10)

rmax T

However, in the case of maximum deformation, a calculation based on Eq. (9) yields Yomax > Y3, which
cannot actually be. In our opinion, the reason for this discrepancy is that the contact point was assumed
circular in the derivation of Eq. (9); in fact, the contact point will have a circular shape only up to certain
values %y < %gmax (W < 107%) and with maximum deformation the boundaries of the areas around the con-
tact points must merge with the contact point having a shape that is almost polygonal. In our view, there-
fore, calculations based on Eq. (9) should give values of y, approximating the actual values only for small
deformations. To calculate y, over the entire range of deformations, 0 = Mk = Mkmax, we consider it
advisable to approximate Eq. (9) in such a way that it satisfies the additional condition Vomax = V3. We
represent the relation y, = y(») in the form y, = A V»y, and then

Yomax = Y3 = A ]"/%x;max' (11
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culated from Eq. (14) for mJk = 0.4
and 0.47; points are experimental
data (mY = 0.47),

AN

4z

0 q05 o #,
Replacing y; and #gxmax in Eq. (11) by their values from Egs. (6) and (10), we obtain an expression
for A:
2V N —1
NV 1= yT—m
Then substituting A from Eq. (12) into Eq. (11), we find y,:

y:l(ﬂ._._~—-xﬂ( —1) ) (13)
PN Uy T,

Equation (13) satisfies the conform1ty condition yymax = ¥3. For the overwhelming ma]orlty of actual
granular systems with a charge porosity mz = 0.4, the porosity of the charge skeleton mzk = (0,4 and the
coordination number N = 7.09. In this case, Eq. (13) simplifies to

Y~ 1.755 Z (14)

A= (12)

Figure 3 presents calculated relations y, = y(ny) for mz = 0.4 and 0.47, which were obtained from
Egs. (9) and (14), as well as the results of our measurements of contact points for deformation of a
plasticine sphere from six sides (faces of a cube). It is clear from Fig. 3 that the theoretieal and experi-
mental relations y, = y(v) are in good agreement over the entire range of v when my = 0.47.

Model of Deformation Process. We introduce the concept of the total relative linear deformation »n
of a system, which is equal to the ratio between the changed dimension (after deformation) and the original
dimension (Fig. 4), and we find a relation between » and m, for deformation of the system. To do this,
we consider a unit volume V, (a cube 1 X 1 X 1) in the as yet undeformed system where the fractional vol-
ume of the solid component with volume V; is V; /Vy =1~ —m}, and the linear deformation of the system
is numerically equal to the relative deformation . After deformation, the volume of the system becomes

= (1 —1)® and the ratio of the volume V; of the solid component to this volume is 1 —m,, i.e.,

1 —m? —m°
ViV=r—©>==1—m, o« un=1— . (15)

T—n® 1—m,

For maximum deformation (m, = 0), we have

Ry = 1—y/ T— 18 (16)

We assume that the relative deformation ¥y of the particles in the skeleton and the relative defor-
mation n— ny of the skeleton itself (its spread) occur simultaneously so that they are proportional to the
deformation w (Fig. 4). Then the deformation of particles in the skeleton is

— A
Hymax 1——1/1—mgk( 3/1__mg)

Ry == % 1— .
“m

— 7)
Fnwe  1—y/ T—m
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Fig. 4. Model deformation because of deformation of particles and
skeleton.

Fig. 5. Comparison of theoretical and experimental data in the tem-~
perature range 20 to 500°C: 1-4) calculated by the proposed method
for mg = 0.4, 0.5, 0,.7, and 1.0; 5, 6, 7) sintered nickel [6], LITMO
(S. Buravoi) and MEI (V. Alekseev); 8, 10, 11) sintered iron, copper,
bronze OF 8.5-0.3, LITMO data (S. Buravoi); 9) sintered iron [4]; 12)
graphite [6]; 13) bronze [5].

One of the basic assumptions is contained in this proportionality condition. We recall that the skele-
ton deformation n —wny was produced by its partial spread, i.e., the particles in it are rearranged and the
cross section of the skeleton becomes thicker. Therefore the porosity of the second-order structure (be-
tween skeletal blocks) decreases during deformation of the system.

We find a relation between the variation of the porosity m,, of the second-order structure and the
corresponding deformation . of the particles and » of the system as a whole. To do this, it is necessary
to replace m, and myi in Eq. (2) by the corresponding values of mg and mgk. It can be shown that the rela-
tions between m, and m{ and between m,} and miy are determined by expressions similar to Egs. (10) and
(16), i.e.,

1 —m? I—ml

. o= 2 . 2K
my =1 ” My =1 A=) (18)

Substituting my and my, from Eq. (18) into Eq. (2), we obtain

L—md /1 —n \*
My = 1 — 2 ( ) (19)

Thermal Conductivity of Skeleton. We determine the effective thermal conductivity of the skeleton
of the system (first-order structure). For this, we use the expression from [2] for the calculation of A
for granular systems where the heat flow through the pores between the particles can be neglected (A, = 0)
and the relative height of microroughnesses in the contact region is zero (there are no microroughnesses
in consolidated systems):

M 2 Ay (/Y )P O7L ' (20)

The function & takes into account spreading out of the flow from the contact point over the cross
section of a particle and, in first approximation, can be assumed to be

D 2 y,/ys. (21)
Equation (20) then takes the form
7”}( = klyzysyfz ' (22)

Thermal Conductivity of the Consolidated System. Using Eq. (3), one can calculate the effective ther~
mal conductivity of a consolidated granular material as a whole. Usually the thermal conductivities of pores
and grains in consolidated materials are considerably different, A,/A; <1072, and the size of an actual
contact point (yy =y, = r,/r = 1072 is considerably greater than the size of the contact point in a free
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charge (y;,y, < 107%), In this case, the main heat flow occurs along the skeleton of consolidated particles
and Eq. (3) is significantly simplified to

Mh, > C . (23)

As shown by our analysis, however, the use of the approximate expression (23) leads to some under-
estimate for calculated values of A /A since it was assumed in the derivation of Eqs. (3) and (23) that the
lines of heat flow were parallel to the overall heat flow. In fact, the lines of flow, being curved, spread
apart at expansion points (nodes) of the skeleton and converge at points of contraction. We take this situa-
tion into account,

Where there is considerable difference between the thermal conductivities of the skeleton and of the
component in the pores of the second-order structure (v, < 0.3 or v, > 3), one should take into account
curvature of the lines of flow in sections filled by the different components. A rigorous consideration of this
situation entails mathematical difficulties. If one considers that subdivision of the elementary cell by
adiabatic planes [3] yields some underestimate for calculated values of the thermal conductivity of the
second-order structure, and subdivision by isothermal planes perpendicular to the heat flow yields an
overestimate of the value of the thermal conductivity [7]

_’“_:{ L B — € B 24
N Grwm—C)  Ge—Chtvi—Cr | (24

one can use as an approximation their arithmetic mean, i.e.,
A = 0.5[hg) 4 Mopl- (25)

The approximate expression (25) gives values which differ from the true values (results of a numeri-
cal solution) by less than 5% for arbitrary values of v,. It is simpler to use Eq. (3) in the region 0.3 < v,
< 3.

Thus, if we know the coefficients of thermal conductivity Ay and Ay for the components, the system
porosity m,, and the initial porosities m) of the charge and mJ of the skeleton, successive application of
Egs. (), (8), (17, (13), (22), (19), (3), (24), and (25) makes possible the calculation of the effective ther-
mal conductivity of a consolidated material.

The relation A /2; = f(m,) for consolidated granular systems with various initial porosities mg (from
0.7 to 0.4) is shown in Fig. 5 as calculated by the proposed method. Plotted in the same figure are known
experimental values of A /)N for cermets produced by hot pressing of powdered nickel, iron, copper,
bronze, and graphite. It is clear from the figure that experimental values of A/ )y fall in the region bounded
by calculated relations for initial porosity range 0.7-0.4. Our observations show that the overwhelming
majority of metal powders have an initial porosity in the range specified, i.e., from 0.7 to 0.4. We there-
fore consider the agreement between calculation and experiment demonstrated in Fig. 5 to be satisfactory.

In addition, by looking at the behavior of the calculated relations A /A = f(m,) for various initial
porosities mg, one can conclude that the thermal conductivity of the components and their concentrations
in a consolidated granular system do not determine its effective thermal conductivity uniquely. To calculate
the effective thermal conductivity, it is necessary to know an additional parameter, the porosity of the
granular material in the free-charge state.
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